Hybrid independent component analysis and support vector machine learning scheme for face detection

نویسندگان

  • Yuan Qi
  • David S. Doermann
  • Daniel DeMenthon
چکیده

In this paper we propose a new hybrid unsupervised / supervised learning scheme that integrates Independent Component Analysis (ICA) with the SupportVector Machine (SVM) approach and apply this new learning scheme to the face detection problem. In low-level feature extraction, ICA produces independent image bases that emphasize edge information in the image data. In high-level classification, SVM classifies the ICA features as a face or non-faces. Our experimental results show that by using ICA features we obtained a larger margin of separation and fewer support vectors than by training SVM directly on the image data. This indicates better generalization performance, which was verified in our experiments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Algorithms for Audio and Video Processing Independent Component Analysis and Support Vector Machine Based Approaches

Title of Dissertation LEARNING ALGORITHMS FOR AUDIO AND VIDEO PROCESSING INDEPENDENT COMPONENT ANALYSIS AND SUPPORT VECTOR MACHINE BASED APPROACHES Yuan Qi Master of Science Dissertation directed by Professor Rama Chellappa Department of Electrical and Computer Engineering In this thesis we propose two new machine learning schemes a Subband based Independent Component Analysis scheme and a hybr...

متن کامل

Intelligent application for Heart disease detection using Hybrid Optimization algorithm

Prediction of heart disease is very important because it is one of the causes of death around the world. Moreover, heart disease prediction in the early stage plays a main role in the treatment and recovery disease and reduces costs of diagnosis disease and side effects it. Machine learning algorithms are able to identify an effective pattern for diagnosis and treatment of the disease and ident...

متن کامل

A hybrid model based on machine learning and genetic algorithm for detecting fraud in financial statements

Financial statement fraud has increasingly become a serious problem for business, government, and investors. In fact, this threatens the reliability of capital markets, corporate heads, and even the audit profession. Auditors in particular face their apparent inability to detect large-scale fraud, and there are various ways to identify this problem. In order to identify this problem, the majori...

متن کامل

Sparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains

In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...

متن کامل

PREDICTION OF SLOPE STABILITY STATE FOR CIRCULAR FAILURE: A HYBRID SUPPORT VECTOR MACHINE WITH HARMONY SEARCH ALGORITHM

The slope stability analysis is routinely performed by engineers to estimate the stability of river training works, road embankments, embankment dams, excavations and retaining walls. This paper presents a new approach to build a model for the prediction of slope stability state. The support vector machine (SVM) is a new machine learning method based on statistical learning theory, which can so...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001